考点:切线的判定.
分析:连接OP,可知OP=OB,即∠OPB=∠B=∠C,推出OP‖AC;因为PE⊥AC所以PE⊥OP,所以PE是⊙O的切线.
连接OP,则OP=OB;
所以∠OPB=∠B=∠C,
所以OP‖AC,
因为PE⊥AC,
所以PE⊥OP,
因此,PE是⊙O的切线.
点评:本题考查了切线的判定,做题时注意利用辅助线.
考点:切线的判定.
分析:连接OP,可知OP=OB,即∠OPB=∠B=∠C,推出OP‖AC;因为PE⊥AC所以PE⊥OP,所以PE是⊙O的切线.
连接OP,则OP=OB;
所以∠OPB=∠B=∠C,
所以OP‖AC,
因为PE⊥AC,
所以PE⊥OP,
因此,PE是⊙O的切线.
点评:本题考查了切线的判定,做题时注意利用辅助线.