显然f(0)=f'(0)=0
ln原式=lim(x→0)ln(1+f(x)/x)/x
=lim(x→0)1/(1+f(x)/x)*(xf'(x)-f(x)/x^2
=lim(x→0)f'(x)/x-f(x)/x^2
=lim(x→0)(f'(x)-f'(0))/(x-0)-f'(x)/(2x)
=f''(0)-1/2lim(x→0)f'(x)/x
=f''(0)-f''(0)/2
=2
所以原式=e^2
显然f(0)=f'(0)=0
ln原式=lim(x→0)ln(1+f(x)/x)/x
=lim(x→0)1/(1+f(x)/x)*(xf'(x)-f(x)/x^2
=lim(x→0)f'(x)/x-f(x)/x^2
=lim(x→0)(f'(x)-f'(0))/(x-0)-f'(x)/(2x)
=f''(0)-1/2lim(x→0)f'(x)/x
=f''(0)-f''(0)/2
=2
所以原式=e^2