Q是P到y=f(x)最近的点则满足PQ⊥Q处的切线
即f'(s)*(f(s)-0)/(s-t)=-1
则t=s+f'(s)f(s)
s/t当t->0的极限相当于
lim(s->0)1/(1+f'(s)f(s)/s)=1/(1+f'(0)^2)=1/(1+a^2)
因为s->0时f'(s)->f'(0),f(s)/s=(f(s)-f(0))/(s-0)->f'(0)
Q是P到y=f(x)最近的点则满足PQ⊥Q处的切线
即f'(s)*(f(s)-0)/(s-t)=-1
则t=s+f'(s)f(s)
s/t当t->0的极限相当于
lim(s->0)1/(1+f'(s)f(s)/s)=1/(1+f'(0)^2)=1/(1+a^2)
因为s->0时f'(s)->f'(0),f(s)/s=(f(s)-f(0))/(s-0)->f'(0)