tan(a)=(2-y1)/(1-x1)
tan(b)=(2-y2)/(1-x2)
tan(a+b)=(tan(a)+tan(b))/(1-tan(a)*tan(b))
PA与PB的倾斜角互补
所以0=tan(a)+tan(b)
即(2-y1)/(1-x1)+(2-y2)/(1-x2)=0
可得:(2-y1)(1-x2)+(2-y2)(1-x1)
=(2-y1)(1-1/4*y2^2)+(2-y2)(1-1/4*y1^2)
=1/4*(y1-2)(y2-2)(4+y1+y2)
=0
所以y1=2或y2=2或y1+y2=-4
因为PA与PB的斜率存在,所以y1=2或y2=2都舍去.
所以y1+y2=-4
(y2-y1)/(x2-x1)
=4*(y2-y1)/(y2^2-y1^2)
=4/(y2+y1)
=-1