tanx-sinx
=sinx/cosx-sinx
=sin(1-cosx)/cosx
x趋于0
则sinx~x
1-cosx~x²/2
所以原式=1/2*limx²*(x²/2)/(x³cosx)
=1/2*lim1/(2cosx)
=1/2*1/2
tanx-sinx
=sinx/cosx-sinx
=sin(1-cosx)/cosx
x趋于0
则sinx~x
1-cosx~x²/2
所以原式=1/2*limx²*(x²/2)/(x³cosx)
=1/2*lim1/(2cosx)
=1/2*1/2