一个数学直线方程的问题L1:A1x+B1y+C1=0 和L2:A2x+B2y+C2=0中A1A2乘B1B2=0求证L1垂

4个回答

  • A1A2 + B1B2 = 0,

    若A1 = 0,

    则B1B2 = 0,

    若B1 = 0,

    则直线L1失去意义,所以,A1 = 0时,B1一定不等于0,所以B2 = 0.

    同样,B2 = 0时,A2一定不等于0.

    这时,

    L1:B1y + C1 = 0,平行于X轴

    L2:A2x + C2 = 0,平行于Y轴

    L1,L2相互垂直.

    同理,

    若A2 = 0,

    则,B2不等于0,B1 = 0,A1不等于0.

    这时,

    L1:A1x + C1 = 0,平行于Y轴

    L2:B2y + C2 = 0,平行于X轴

    L1,L2相互垂直.

    当A1,A2都不等于0时,B1,B2也都不等于0.

    A1A2 + B1B2 = 0,

    (A1/B1)(A2/B2) + 1 = 0,

    (A1/B1)(A2/B2) = -1.

    此时,

    L1的斜率 = -A1/B1,

    L2的斜率 = -A2/B2.

    L1的斜率*L2的斜率 = (A1/B1)(A2/B2) = -1.

    L1与L2相互垂直.

    综合,知,

    当A1A2 + B1B2 = 0时,总有L1与L2相互垂直.