f(x)=sin2wx+√3sinwxsin(wx+π/2)
=1/2(1-cos2wx)+√3sinwxcoswx
=1/2-1/2 cos2wx + √3/2 sin2wx
=1/2-(sinπ/6cos2wx-cosπ/6sin2wx)
=1/2-sin(π/6-2wx)
=sin(2wx-π/6)+1/2
所以它的最小正周期是2π/2w=π/w=π,所以w的值为1
f(x)=sin2wx+√3sinwxsin(wx+π/2)
=1/2(1-cos2wx)+√3sinwxcoswx
=1/2-1/2 cos2wx + √3/2 sin2wx
=1/2-(sinπ/6cos2wx-cosπ/6sin2wx)
=1/2-sin(π/6-2wx)
=sin(2wx-π/6)+1/2
所以它的最小正周期是2π/2w=π/w=π,所以w的值为1