原极限=lim[1+tanx-1-sinx]/[x^3(根号(1+tanx)+根号(1+sinx))]
分开 =lim[tanx-sinx]/x^3*lim 1/[(根号(1+tanx)+根号(1+sinx))]
=lim[tanx(1-cosx)]/x^3*lim 1/(1+1)
等价无穷小 再分开 =limtanx/x *lim(1-cosx)/x^2*(1/2)
=1*(1/2)*(1/2 ) =1/4
原极限=lim[1+tanx-1-sinx]/[x^3(根号(1+tanx)+根号(1+sinx))]
分开 =lim[tanx-sinx]/x^3*lim 1/[(根号(1+tanx)+根号(1+sinx))]
=lim[tanx(1-cosx)]/x^3*lim 1/(1+1)
等价无穷小 再分开 =limtanx/x *lim(1-cosx)/x^2*(1/2)
=1*(1/2)*(1/2 ) =1/4