证法1:
AB·PB-AC· PC=AB·PC-AC·PB
(AB+AC)PB=(AB+AC)PC
PB=PC;
∵PA,PB为切线
∴PA=PB=PC;
∵AP⊥PC
∴∠PAC=∠PCA=45°
∠PAB=∠PBA
∠APB=180-2∠PAB;
∠BPC=90-∠APB=90-(180-2∠PAB)=2∠PAB-90°
∵∠PAB=2∠BPC
1/2∠PAB=2∠PAB-90°
∠PAB=60°
∠BPC=1/2∠PAB=30°
∠PCB=∠PBC=1/2(180-∠BPC)=75°
∴∠ACB=∠PCB-∠PCA=75-45=30°;
证法2:
AB·PB-AC· PC=AB·PC-AC·PB
(AB+AC)PB=(AB+AC)PC
PB=PC;
∵PA,PB为切线
∴PA=PB=PC;
∴ABC在P点为圆心PA为半径的圆上;
∴∠ACB=1/2∠APB(同弧所对的圆周角是圆心角的一半)
∠PAB=∠PBA
∠APB=180-2∠PAB;
∵AP⊥PC
∠BPC=90-∠APB=90-(180-2∠PAB)=2∠PAB-90°
∵∠PAB=2∠BPC
1/2∠PAB=2∠PAB-90°
∠PAB=60°
∴∠ACB=1/2*60=30°