如图,PA,PB分别切圆O与AB两点

1个回答

  • 证法1:

    AB·PB-AC· PC=AB·PC-AC·PB

    (AB+AC)PB=(AB+AC)PC

    PB=PC;

    ∵PA,PB为切线

    ∴PA=PB=PC;

    ∵AP⊥PC

    ∴∠PAC=∠PCA=45°

    ∠PAB=∠PBA

    ∠APB=180-2∠PAB;

    ∠BPC=90-∠APB=90-(180-2∠PAB)=2∠PAB-90°

    ∵∠PAB=2∠BPC

    1/2∠PAB=2∠PAB-90°

    ∠PAB=60°

    ∠BPC=1/2∠PAB=30°

    ∠PCB=∠PBC=1/2(180-∠BPC)=75°

    ∴∠ACB=∠PCB-∠PCA=75-45=30°;

    证法2:

    AB·PB-AC· PC=AB·PC-AC·PB

    (AB+AC)PB=(AB+AC)PC

    PB=PC;

    ∵PA,PB为切线

    ∴PA=PB=PC;

    ∴ABC在P点为圆心PA为半径的圆上;

    ∴∠ACB=1/2∠APB(同弧所对的圆周角是圆心角的一半)

    ∠PAB=∠PBA

    ∠APB=180-2∠PAB;

    ∵AP⊥PC

    ∠BPC=90-∠APB=90-(180-2∠PAB)=2∠PAB-90°

    ∵∠PAB=2∠BPC

    1/2∠PAB=2∠PAB-90°

    ∠PAB=60°

    ∴∠ACB=1/2*60=30°