要使x+1/(x-1)≥a对x>1恒成立,只要x+1/(x-1)的最小值都大于等于a即可.
而当x>1时,x-1>0,有
x+1/(x-1)=(x-1)+1/(x-1)+1
≥2√(x-1)*1/(x-1)+1
=3
当且仅当x-1=1/(x-1)即x=2(x=0舍去)时,取得等号.
所以该式最小值为3.于是有:a≤3.
要使x+1/(x-1)≥a对x>1恒成立,只要x+1/(x-1)的最小值都大于等于a即可.
而当x>1时,x-1>0,有
x+1/(x-1)=(x-1)+1/(x-1)+1
≥2√(x-1)*1/(x-1)+1
=3
当且仅当x-1=1/(x-1)即x=2(x=0舍去)时,取得等号.
所以该式最小值为3.于是有:a≤3.