连结AE,设AD的垂直平分线交AD于F
可知∠ADE=∠DAE,DE=AE,∠BAD=∠DAC
∠ACE=∠ADE+∠DAC (∠ACE为△ACD的外角)
∠ACE=∠DAE+∠BAD=∠BAE (∠ADE=∠DAE,∠BAD=∠DAC)
∠BEA为公共角
∴△ACE∽△BAE
∴BE/AE=AE/EC
AE²=BE*EC
即DE²=BE*EC (DE=AE)
连结AE,设AD的垂直平分线交AD于F
可知∠ADE=∠DAE,DE=AE,∠BAD=∠DAC
∠ACE=∠ADE+∠DAC (∠ACE为△ACD的外角)
∠ACE=∠DAE+∠BAD=∠BAE (∠ADE=∠DAE,∠BAD=∠DAC)
∠BEA为公共角
∴△ACE∽△BAE
∴BE/AE=AE/EC
AE²=BE*EC
即DE²=BE*EC (DE=AE)