∵b/a+a/b≥2(√b/a×√a/b)=2×1=2
c/a+a/c≥2(√c/a×√a/c)=2×1=2
c/b+b/c≥2(√c/b×√b/c)=2×1=2
∴1/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+b/a+c/a+a/b+c/b+1+a/c+b/c+1
=3+(b/a+a/b)+(c/a+a/c)+(c/b+b/c)
≥3+2+2+2
=9
∵b/a+a/b≥2(√b/a×√a/b)=2×1=2
c/a+a/c≥2(√c/a×√a/c)=2×1=2
c/b+b/c≥2(√c/b×√b/c)=2×1=2
∴1/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+b/a+c/a+a/b+c/b+1+a/c+b/c+1
=3+(b/a+a/b)+(c/a+a/c)+(c/b+b/c)
≥3+2+2+2
=9