∫(- 2→0) (x + 1)/(x² + 2x + 2) dx
= (1/2)∫(- 2→0) (2x + 2)/(x² + 2x + 2) dx
= (1/2)∫(- 2→0) d(x² + 2x + 2)/(x² + 2x + 2)
= (1/2)ln(x² + 2x + 2) |(- 2→0)
= (1/2)ln(2) - (1/2)ln(4 - 4 + 2)
= (1/2)ln(2) - (1/2)ln(2)
= 0
∫(- 2→0) (x + 1)/(x² + 2x + 2) dx
= (1/2)∫(- 2→0) (2x + 2)/(x² + 2x + 2) dx
= (1/2)∫(- 2→0) d(x² + 2x + 2)/(x² + 2x + 2)
= (1/2)ln(x² + 2x + 2) |(- 2→0)
= (1/2)ln(2) - (1/2)ln(4 - 4 + 2)
= (1/2)ln(2) - (1/2)ln(2)
= 0