证明:(1)如图,
连结AC,AD 1,CD 1,A 1C 1,A 1B,C 1B.
∵ABCD-A 1B 1C 1D 1是正方体,∴AA 1∥ CC 1,AA 1=CC 1,
∴四边形AA 1C 1C为平行四边形,∴A 1C 1∥ AC.
A 1C 1⊄平面ACD 1,AC⊂平面ACD 1,∴A 1C 1∥ 平面ACD 1;
∵A 1D 1∥ BC,A 1D 1=BC,∴四边形A 1BCD 1为平行四边形,∴A 1B ∥ CD 1.
A 1B⊄平面ACD 1,CD 1⊂平面ACD 1,∴A 1B ∥ ⊄平面ACD 1,
又A 1B∩A 1C 1=A 1,
∴平面A 1BC 1∥ 平面ACD 1;
(2)连结C 1F,∵E,F分别是棱AA 1,BB 1的中点,∴EF ∥ C 1D 1,EF=C 1D 1
∴EFC 1D 1是平行四边形,∴D 1F ∥ C 1E.
设正方体ABCD-A 1B 1C 1D 1的棱长为2,解直角三角形求得 A 1 C 1 =2
2 , A 1 F= C 1 F=
5 .
在△A 1C 1F中,由余弦定理得 cos∠ A 1 F C 1 =
A 1 F 2 + C 1 F 2 - A 1 C 1 2
2 A 1 F• C 1 F =
(
5 ) 2 +(
5 ) 2 -(2
2 ) 2
2×
5 ×
5 =
1
5 .
∴异面直线A 1F与D 1E所成的角的余弦值是
1
5 .
1年前
6