解题思路:作CH⊥AB于H,由条件可以得出四边形ADCH为矩形,根据矩形的性质就可以求出CH、BH的长,设EF=x,则BE=x,AE=6-x,根据矩形的面积公式就可以建立等式,从而求出其解.
过C作CH⊥AB于H.
在直角梯形ABCD中,DC∥AB,∠ADC=90°,
∴四边形ADCH为矩形.
∴CH=AD=2m,BH=AB-CD=6-4=2m.
∴CH=BH.
设EF=x,则BE=x,AE=6-x,由题意,得
x(6-x)=5
整理得:x2-6x+5=0,
(x-1)(x-5)=0,
解得:x1=1,x2=5(舍去)
∴矩形的一边EF长为1m.
点评:
本题考点: 一元二次方程的应用.
考点点评: 本题考查了直角梯形的性质,矩形的性质,矩形的面积公式的运用,在解答时根据面积建立方程求解这是在几何图形中列一元二次方程求解的常用方法.