从E点做AD和BC的平行线,交AB与F点,
∵ ∠CBE=EBF,∠DAE=EAF,BC∥ED∥AD
∴ BC=EF=BF=AF=AD,∠CBE=∠EBF=∠BEF,∠FEA=∠FAE,∴BC+AD=AB
从F像AE做垂直平分线交AE为H点,则∠EFH=∠HFA
∠HFA+∠EAB=90°,∴ ∠BEF+∠AEF=90°,即 (1) AE⊥BE.
(2) ∵ BC=EF=BF=AF=AD,BC∥ED∥AD
∴ CD∥AB,CE=ED,即 E为CD中点.
从E点做AD和BC的平行线,交AB与F点,
∵ ∠CBE=EBF,∠DAE=EAF,BC∥ED∥AD
∴ BC=EF=BF=AF=AD,∠CBE=∠EBF=∠BEF,∠FEA=∠FAE,∴BC+AD=AB
从F像AE做垂直平分线交AE为H点,则∠EFH=∠HFA
∠HFA+∠EAB=90°,∴ ∠BEF+∠AEF=90°,即 (1) AE⊥BE.
(2) ∵ BC=EF=BF=AF=AD,BC∥ED∥AD
∴ CD∥AB,CE=ED,即 E为CD中点.