题目:
已知A、B、C都是正数,求证:(A+B)(B+C)(C+A)≥8ABC.
证明:利用基本不等式,可得:
(A+B)≥2√(AB)
(B+C)≥2√(BC)
(C+A)≥2√(CA)
以上三式相乘,得:
(A+B)(B+C)(C+A)≥2√(AB)×2√(BC)×2√(CA)=8ABC
等号当且仅当A=B=C时成立.
注:基本不等式为:对于正数x、y,有:(√x-√y)²≥0,展开整理即得:
x+y≥2√xy
其中√表示二次根号.
题目:
已知A、B、C都是正数,求证:(A+B)(B+C)(C+A)≥8ABC.
证明:利用基本不等式,可得:
(A+B)≥2√(AB)
(B+C)≥2√(BC)
(C+A)≥2√(CA)
以上三式相乘,得:
(A+B)(B+C)(C+A)≥2√(AB)×2√(BC)×2√(CA)=8ABC
等号当且仅当A=B=C时成立.
注:基本不等式为:对于正数x、y,有:(√x-√y)²≥0,展开整理即得:
x+y≥2√xy
其中√表示二次根号.