自然数1,2,3,…一直写下去,组成一个数123456789101112…,写到某个数的时候,所组成的数刚好第一次被72

1个回答

  • 解题思路:72=8×9,8和9互质,即这个自然数能同时被8和9整除.因为任意9个连续自然数的和能被9整除,所以任意9个连续自然数所组成的多位数一定能被9整除.那么,当写到9、18、27、36、45、…时,能被9整除.因为9、18、27、36、45、…本身又都是9的倍数,所以,写到8、17、26、35、44、…时也都能被9整除.又因为被8整除的数的特征为末三位所组成的数能被8整除.因为678、718、526都不能被8整除,而536能被8整除,所以这个自然数为36.

    因为72=8×9,8和9互质,任意9个连续自然数所组成的多位数一定能被9整除,

    则9、18、27、36、45、…时,能被9整除.

    因为9、18、27、36、45、…本身又都是9的倍数,

    所以写到8、17、26、35、44、…时也都能被9整除.

    因为678、718、526都不能被8整除,而536能被8整除,

    所以这个自然数为36.

    答:这个自然数是36.

    点评:

    本题考点: 数的整除特征.

    考点点评: 考查了数的整除特征,关键是熟悉任意9个连续自然数的和能被9整除,被8整除的数的特征为末三位所组成的数能被8整除.