由弧微分公式
ds=√(1+(y')^2) dx=√(1+sinx)dx
故s=∫√(1+sinx)dx 积分区间是(0,π)
1+sinx=(sinx/2)^2+(cosx/2)^2+2sinx/2cosx/2
故积分可化为 ∫sinx/2dx+∫cosx/2dx=2(sinx/2-cosx/2)
带入积分区间可得结果为4
由弧微分公式
ds=√(1+(y')^2) dx=√(1+sinx)dx
故s=∫√(1+sinx)dx 积分区间是(0,π)
1+sinx=(sinx/2)^2+(cosx/2)^2+2sinx/2cosx/2
故积分可化为 ∫sinx/2dx+∫cosx/2dx=2(sinx/2-cosx/2)
带入积分区间可得结果为4