设A(x1,y1) B(x2,y2) AB中点M(x,y),应有
x=x1+x2/2 ==>x1+x2=2x①
y=y1+y2/2 ==>y1+y2=2y②
又AB两点都在圆上,有
x1^2+y1^2=64③
x2^2+y2^2=64④
* =0
(x1-3)(x2-3)+(y1-4)(y2-4)=0
x1x2+y1y2-3(x1+x2)-4(y1+y2)+25=0⑤
又由③+④得(x1^2+x2^2)+(y1^2+y2^2)=128
(x1+x2)^2+(y1+y2)^2-2(x1x2+y1y2)=128
代入①②得4x^2+4y^2-2(x1x2+y1y2)=128
x1x2+y1y2=2x^2+2y^2-64⑥
⑥代入⑤2x^2+2y^2-64-6x-8y+25=0即M点轨迹为
2x^2+2y^2-6x-8y-39=0
显然M点为Q点和P点的中点,设Q(m,n)于是有
x=m+3/2
y=n+4/2
代入M的方程2(m+3/2)^2+2(n+4/2)^2-6(m+3/2)-8(n+4/2)-39=0
我不化简了