已知点P(3,4)为圆C:x^2+y^2=64内一点,圆周上有两动点A、B,当∠APB= 90°时,以AP、BP为邻边,

1个回答

  • 设A(x1,y1) B(x2,y2) AB中点M(x,y),应有

    x=x1+x2/2 ==>x1+x2=2x①

    y=y1+y2/2 ==>y1+y2=2y②

    又AB两点都在圆上,有

    x1^2+y1^2=64③

    x2^2+y2^2=64④

    * =0

    (x1-3)(x2-3)+(y1-4)(y2-4)=0

    x1x2+y1y2-3(x1+x2)-4(y1+y2)+25=0⑤

    又由③+④得(x1^2+x2^2)+(y1^2+y2^2)=128

    (x1+x2)^2+(y1+y2)^2-2(x1x2+y1y2)=128

    代入①②得4x^2+4y^2-2(x1x2+y1y2)=128

    x1x2+y1y2=2x^2+2y^2-64⑥

    ⑥代入⑤2x^2+2y^2-64-6x-8y+25=0即M点轨迹为

    2x^2+2y^2-6x-8y-39=0

    显然M点为Q点和P点的中点,设Q(m,n)于是有

    x=m+3/2

    y=n+4/2

    代入M的方程2(m+3/2)^2+2(n+4/2)^2-6(m+3/2)-8(n+4/2)-39=0

    我不化简了