我刚做好,又有一个你问相同的题目
假设b=ak
a^5+b^5=2*(a^2)*(b^2)
a^5+a^5k^5-2k^2a^4=0
a^4(a+ak^5-2k^2)=0
当a=b=0时,1-ab=1显然成立
当a不等于0时
a+ak^5-2k^2=0
a=2k^2/(1+k^5)
b=2k^3/(1+k^5)
1-ab=1-[4k^5/(1+k^5)^2]
=[(1-k^5)/(1+k^5)]^2
=[(1-b^5/a^5)/(1+b^5/a^5)]^2
=[(a^5-b^5)/(a^5+b^5)]^2
所以
1-ab是一个有理数的平方,这个有理数是
(a^5-b^5)/(a^5+b^5)或者(-a^5+b^5)/(a^5+b^5)