证明:(1)很明显,
AB=AD
∠D=∠ABD
∠BAC=∠D+∠ABD
∠BAC=2∠D
(2)过点B做BE垂直AC于E
作∠C的平分线交BE于F
设AE=x
在直角三角形ABE和直角三角形CBE中
BE²=AB²-AE²
BE²=BC²-CE²
AB²-AE²=BC²-CE²
c²-x²=a²-(b-x)²
c²=a²-b²+2bx
x=(c²+b²-a²)/2b
x=[(c+a)(c-a)+b²]/2b
2b=c+a
AE=x=(5c-3a)/4
CE=b-x=(c+a)/2-(5c-3a)/4=(5a-3c)/4
DE=c+x=c+(5c-3a)/4=(9c-3a)/4
∠D=1/2∠BAC(已证)
tan1/2∠BAC×tan1/2∠BCA=BE/DE×EF/EC
在直角三角形CEB中,根据角平分线的性质
BC/CE=BF/EF
BF/EF=a/(5a-3c)/4=4a/(5a-3c)
(BF+EF)/EF=(9a-3c)/(5a-3c)
BE/EF=(9a-3c)/(5a-3c)
EF=(5a-3c)/(9a-3c)BE
所以
tan1/2∠BAC×tan1/2∠BCA=[(5a-3c)/(9a-3c)BE²]/(DE×EC)
BE²=AB²-AE²=c²-(5c-3a)²/16=(30ca-9a²-9c²)/16
所以
tan1/2∠BAC×tan1/2∠BCA
=[(5a-3c)/(9a-3c)×(30ca-9a²-9c²)/16]/[(5a-3c)/4×(9c-3a)/4]
=[(9a²-30ac+9c²)/(9a-3c)(3a-9c)]
=(3a²-10ac+3c²)/[3(3a-c)(a-3c)]
=(a-3c)(3a-c)/[3(3a-c)(a-3c)]
=1/3