(1)证明:连接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD ∥ AC.
又DE⊥AC,
∴DE⊥OD.
∴DE是⊙O的切线.
(2)⊙O与AC相切于F点,连接OF,
则:OF⊥AC.
在Rt△OAF中,sinA=
OF
OA =
3
5 ,
∴OA=
5
3 OF,
又AB=OA+OB=5,
∴
5
3 OF+OF=5 .
∴OF=
15
8 cm.
(1)证明:连接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD ∥ AC.
又DE⊥AC,
∴DE⊥OD.
∴DE是⊙O的切线.
(2)⊙O与AC相切于F点,连接OF,
则:OF⊥AC.
在Rt△OAF中,sinA=
OF
OA =
3
5 ,
∴OA=
5
3 OF,
又AB=OA+OB=5,
∴
5
3 OF+OF=5 .
∴OF=
15
8 cm.