一:sinAcosB-sinBcosA=3/5(sinAcosB+sinAcosB)
2/5sinAcosB=8/5sinAcosB
sinAcosB=4sinBcosA(等式两侧同除以cosAcosB)
tanA=4tanB
二:(tanA-tanB)/(1+tanAtanB)
=(4tanB-tanB)/(1+4tan²B)(上下同除以tanB)
= 3/(1/tanB+4tanB)≤3/2√(1/tanB×4tanB) (基本不等式)
≤3/4
一:sinAcosB-sinBcosA=3/5(sinAcosB+sinAcosB)
2/5sinAcosB=8/5sinAcosB
sinAcosB=4sinBcosA(等式两侧同除以cosAcosB)
tanA=4tanB
二:(tanA-tanB)/(1+tanAtanB)
=(4tanB-tanB)/(1+4tan²B)(上下同除以tanB)
= 3/(1/tanB+4tanB)≤3/2√(1/tanB×4tanB) (基本不等式)
≤3/4