f(x)=sin(π-wx)coswx+cos²wx
=sinwxcoswx+cos²wx
=(1/2)sin2wx+(1/2)cos2wx+1/2
=(√2/2)sin(2wx+π/4)+1/2
∵f(x)最小正周期为π
∴2π/2w=π
w=1
∴f(x)=(√2/2)sin(2x+π/4)+1/2
g(x)=(√2/2)sin(2*2x+π/4)+1/2
=(√2/2)sin(4x+π/4)+1/2
0≤x≤π/16
π/4≤4x+π/4≤π/2
1≤g(x)≤(√2/2)+1/2
f(x)=sin(π-wx)coswx+cos²wx
=sinwxcoswx+cos²wx
=(1/2)sin2wx+(1/2)cos2wx+1/2
=(√2/2)sin(2wx+π/4)+1/2
∵f(x)最小正周期为π
∴2π/2w=π
w=1
∴f(x)=(√2/2)sin(2x+π/4)+1/2
g(x)=(√2/2)sin(2*2x+π/4)+1/2
=(√2/2)sin(4x+π/4)+1/2
0≤x≤π/16
π/4≤4x+π/4≤π/2
1≤g(x)≤(√2/2)+1/2