设e^(x+y)+cos(xy)=0确定y是x的函数求dy

1个回答

  • f(x,y)=e^(x+y)+cos(xy)=0 //: 利用隐函数存在定理:

    f 'x(x,y)=e^(x+y) - ysin(xy)

    f 'y(x,y)=e^(x+y) - xsin(xy)

    dy/dx = - f 'x/f 'y = -[e^(x+y) - ysin(xy)]/[e^(x+y) - xsin(xy)]

    dy = -[e^(x+y) - ysin(xy)]/[e^(x+y) - xsin(xy)]dx

    2. (1+y')e^(x+y) - (y+xy')sin(xy)=0 //: 直接对x求导:

    e^(x+y)+y'e^(x+y)-ysin(xy)-xy'sin(xy)=0

    y' [e^(x+y)-xsin(xy)]=-e^(x+y)+ysin(xy)

    y'(x) = -[e^(x+y) - ysin(xy)]/[e^(x+y) - xsin(xy)]

    dy = -[e^(x+y) - ysin(xy)]/[e^(x+y) - xsin(xy)]dx

    3. 两种方法结果相同.