(1)∵∠AOC=60°,∠DOC=30°,
∴∠DOC=90°,
∴∠DOM=45°,
∴∠MOC=45°-30°=15°.
∵∠AOC=60°,∠AOB=150°,
∴∠BOC=90°,
∴∠NOC=45°,
∴∠NOD=45°-30°=15°.
∴∠MOC=∠NOD,
(2)①:∵OM平分∠AOD,ON平分∠BOC,
∴∠AOD=2∠AOM,∠BOC=2∠BON.
∴∠AOB=∠AOD+∠BOC-∠COD=2∠AOM+2∠BON-30°=150°
∴∠AOM+∠BON=90°,
∴∠MON=150°-90°=60°
②令∠MOC=∠AOC=x,
则∠DOM=30°-x,则30°-x=2 x,
可得x=10°,
则∠DOM=20°,则∠NOD=40°,
则∠AOC=10°,∠NOD=4∠MOC.
(1)直线ON是否平分∠AOC.理由:
设ON的反向延长线为OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵OM⊥ON,
∴∠MOD=∠MON=90°,
∴∠COD=∠BON,
又∵∠AOD=∠BON(对顶角相等),
∴∠COD=∠AOD,
∴OD平分∠AOC,
即直线ON是否平分∠AOC.
(2)∵∠BOC=120°
∴∠AOC=60°,
∴∠BON=∠COD=30°,
即旋转60°时ON平分∠AOC,
由题意得,6t=60°或240°,
∴t=10或40;