在直角△ABC中,CM=AM=MB,(直角三角形的斜边中线等于斜边一半),
∴∠MCB=∠B,∠A=∠ACM,
由折叠的性质可得:∠A=∠D,∠MCD=∠MCA,AM=DM,
∴MC=MD,MB⊥CD,
∴CM=DM,∠CMB=∠DMB,
∴∠CMB为△ACM的外角,
∴∠B=∠CMB=∠A+∠ACM=2∠A,
又∠A+∠B=90°,
∴∠A=30°,
∴tanA=tan30°=
3
3 .
故答案为:
3
3 .
在直角△ABC中,CM=AM=MB,(直角三角形的斜边中线等于斜边一半),
∴∠MCB=∠B,∠A=∠ACM,
由折叠的性质可得:∠A=∠D,∠MCD=∠MCA,AM=DM,
∴MC=MD,MB⊥CD,
∴CM=DM,∠CMB=∠DMB,
∴∠CMB为△ACM的外角,
∴∠B=∠CMB=∠A+∠ACM=2∠A,
又∠A+∠B=90°,
∴∠A=30°,
∴tanA=tan30°=
3
3 .
故答案为:
3
3 .