解题思路:观察①式可将(x+2y)写成(x+2y)×1,将(x+2y)看做一个整体,利用完全平方公式进行因式分解.
观察②式可将4(a+b-1)运用分配律改写成4(a+b)-4,将(a+b)看做一个整体,利用完全平方公式进行因式分解.
①(x+2y)2-2(x+2y)+1
=(x+2y)2-2(x+2y)×1+12
=((x+2y)-1)2
=(x+2y-1)2
故答案为(x+2y-1)2.
②(a+b)2-4(a+b-1)
=(a+b)2-4(a+b)+4
=(a+b)2-2×(a+b)×2+22
=((a+b)-2)2
=(a+b-2)2
故答案为(a+b-2).
点评:
本题考点: 因式分解-运用公式法.
考点点评: 此题的关键在于整体思想的灵活运用,再结合完全平方公式进行因式分解.