a=1 时:
f(x)=x^3+x^2-x+m
两个极值点分别为:
x1=-1 , x2=1/3
根据前面两个问题的分析,可知:
f(x)极大=f(-1)=m+1
f(x)极小=f(1/3)=m-5/27
要使有三个不同的零点,则由图像增减的性质,则有:
f(x)极大=f(-1)=m+1>0
f(x)极小=f(1/3)=m-5/27
a=1 时:
f(x)=x^3+x^2-x+m
两个极值点分别为:
x1=-1 , x2=1/3
根据前面两个问题的分析,可知:
f(x)极大=f(-1)=m+1
f(x)极小=f(1/3)=m-5/27
要使有三个不同的零点,则由图像增减的性质,则有:
f(x)极大=f(-1)=m+1>0
f(x)极小=f(1/3)=m-5/27