f(x1)+f(x2)=(4^x1-1)/(4^x1+1)+(4^x2-1)/(4^x2+1)=1,
∴(4^x1-1)(4^x2+1)+(4^x2-1)(4^x1+1)=(4^x1+1)(4^x2+1),
∴4^(x1+x2)=4^x1+4^x2+3>=2*2^(x1+x2)+3,
设u=2^(x1+x2)>0,则u^2-2u-3>=0,u>=3,
f(x1+x2)=[4^(x1+x2)-1]/[4^(x1+x2)+1]=1-2/(4^x1+4^x2+4)>=1-2/(2u+4)>=1-2/10=4/5,选B.