特征方程
r^2-4=0
r=±2,因此等号右边包含在通解中
设特解是axe^(2x)
y'=2axe^(2x)+ae^(2x)
y''=4axe^(2x)+4ae^(2x)
代入原方程得
4axe^(2x)+4ae^(2x)-4axe^(2x)=e^(2x)
a=1/4
所以特解是y=1/4xe^(2x)
特征方程
r^2-4=0
r=±2,因此等号右边包含在通解中
设特解是axe^(2x)
y'=2axe^(2x)+ae^(2x)
y''=4axe^(2x)+4ae^(2x)
代入原方程得
4axe^(2x)+4ae^(2x)-4axe^(2x)=e^(2x)
a=1/4
所以特解是y=1/4xe^(2x)