设3^n+11^m=10K(K为正整数),
则3^n=10K-11^m
3^(n+4)+11^(m+2)
=81(10K-11^m)+121*11^m
=510K+(121-81)*11^m
=510K+40*11^m
=10[51K+4*11^m]
k、m都是正整数,
∴3^(n+4)+11^(m+2)被10整除.
设3^n+11^m=10K(K为正整数),
则3^n=10K-11^m
3^(n+4)+11^(m+2)
=81(10K-11^m)+121*11^m
=510K+(121-81)*11^m
=510K+40*11^m
=10[51K+4*11^m]
k、m都是正整数,
∴3^(n+4)+11^(m+2)被10整除.