假设A(x,x+1) (x>0)
AC=√(AB^2+BC^2)
=√[AB^2+(OB+OC)^2]
=√[(x+1)^2+(x+1)^2]
=√2*(x+1)
又S△ABC=AB*BC/2
= AB *(OB+OC)/2
=(x+1)*(x+1)/2
=1
得x+1=√2
则AC=2
假设A(x,x+1) (x>0)
AC=√(AB^2+BC^2)
=√[AB^2+(OB+OC)^2]
=√[(x+1)^2+(x+1)^2]
=√2*(x+1)
又S△ABC=AB*BC/2
= AB *(OB+OC)/2
=(x+1)*(x+1)/2
=1
得x+1=√2
则AC=2