抛物线焦点是(0,1)所以过焦点的直线方程可设为y=kx+1,直线方程与抛物线方程联立得x^2-4kx-4=0,设直线与抛物线交与两点A(x1,y1) 、B(x2,y2) ,x1+x2=4k x1*x2=-4 y1-y2=k(x1-x2)
AB^2=(x1-x2)^2+(y1-y2)^2=(x1-x2)^2+k^2(x1-x2)^2=(1+k^2)(x1-x2)^2
(x1-x2)^2=(x1+x2)^2-4x1*x2=16*k^2+16
AB^2=(1+k^2)(16*k^2+16)=8^2整理得k=1或k=-1
直线方程为y=x+1或y=-x+1