你提供的答案是错的.
对(1/根号下(y^2-1))dy积分,得:arcsiny+C1
当右边是正号时,右边积分得x+C2,所以arcsiny=x+C,即y=sin(x+C),所以
y'=cos(x+c),所以y(1)=sin(C+1)=1,y'(1)=cos(C+1)=0,所以C+1=2k*pi+pi/2 (k属于整数),即y=sin[x+2k*pi+(pi/2)-1]=cos(x-1)
当右边是负号时同上得:y=cos(1-x)=cos(x-1)
综上,方程的解为y=cos(x-1),x属于实数.