已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为A(2,0)离心率为√2/2,直线y=k(x-1

1个回答

  • 设M(x1,y1),N(x2,y2)

    联立直线椭圆,得:

    (1+2k²)x² - 4k²x+2k²-4=0

    x1+x2=4k²/(1+2k²),x1x2=(2k²-4)/(1+2k²)

    |MN|=√[(x1-x2)²+(y1-y2)²]

    =√{ (x1-x2)² + [k(x1-1) - k(x2-1)]² }

    =√[(x1-x2)² + k²(x1-x2)²]

    =√[(1+k²)(x1-x2)²]

    =√{ (1+k²)[(x1+x2)² - 4x1x2]

    =√{ (1+k²)[16k^4/(1+2k²)² - 4(2k²-4)/(1+2k²) ] }

    =√[(1+k²)(24k²+16)/(1+2k²)² ]

    A点到直线距离为

    h=|k|/√(1+k²)

    ∴S=(1/2)·h·|MN|

    =(1/2)·[|k|/√(1+k²)] ·√[(1+k²)(24k²+16)/(1+2k²)² ]

    =(1/2)·|k|·√[(24k²+16)/(1+2k²)²]

    =√10/3

    即:|k|·√[(24k²+16)/(1+2k²)²] = 2√10/3

    两边平方,得:(24k^4 + 16k²)/(1+2k²)² = 40/9

    即:7k^4 - 2k² - 5=0

    解得:k²=1或-5/7 (舍去)

    ∴k²=1

    ∴k=±1