如图,○O半径为根号17,AB为直径,M、N为圆上两点,M、N在AB同侧,AM、BN交于P,则AP·AM+BP·BN=?

2个回答

  • 分析:连接AN、BM,根据圆周角定理,由AB是直径,可证∠AMB=90°,由勾股定理知,BP 2 =MP 2 +BM 2 ,由相交弦定理知,AP•PM=BP•PN,原式=AP(AP+PM)+BP(BP+PN)=AP 2 +AP•PM+BP 2 +BP•PN=AP 2 +BP 2 +2AP•PM=AP 2 +MP 2 +BM 2 +2AP•PM=AP 2 +(AP+PM) 2 =AP 2 +AM 2 =AB 2 =36.

    连接AN、BM,

    ∵AB是直径,

    ∴∠AMB=90°.

    ∴BP^2 =MP^2 +BM^2

    ∴AP•PM=BP•PN

    原式=AP(AP+PM)+BP(BP+PN)=AP 2 +AP•PM+BP^2 +BP•PN

    =AP^2 +BP^2 +2AP•PM

    =AP^2 +MP^2 +BM^2 +2AP•PM

    =BM^2 +(AP+PM)^2 =BM^2+AM^2 =AB^2 =4*17=68.