分析:连接AN、BM,根据圆周角定理,由AB是直径,可证∠AMB=90°,由勾股定理知,BP 2 =MP 2 +BM 2 ,由相交弦定理知,AP•PM=BP•PN,原式=AP(AP+PM)+BP(BP+PN)=AP 2 +AP•PM+BP 2 +BP•PN=AP 2 +BP 2 +2AP•PM=AP 2 +MP 2 +BM 2 +2AP•PM=AP 2 +(AP+PM) 2 =AP 2 +AM 2 =AB 2 =36.
连接AN、BM,
∵AB是直径,
∴∠AMB=90°.
∴BP^2 =MP^2 +BM^2
∴AP•PM=BP•PN
原式=AP(AP+PM)+BP(BP+PN)=AP 2 +AP•PM+BP^2 +BP•PN
=AP^2 +BP^2 +2AP•PM
=AP^2 +MP^2 +BM^2 +2AP•PM
=BM^2 +(AP+PM)^2 =BM^2+AM^2 =AB^2 =4*17=68.