令t=1/x,则
W=lim(t+2^t)^(1/t) (t->0)
=lim[1+(t+2^t-1)]^{[1/(t+2^t-1)][(t+2^t-1)/t]} (t->0)
=lim e^[(t+2^t-1)/t] (t->0) .利用重要极限lim(1+1/n)^n=e(n->+∞)
=e^lim[(t+2^t-1)/t] (t->0)
=e^lim(1+2^t*ln2) (t->0) .L'Hospital法则
=e^(1+ln2)
=2e
令t=1/x,则
W=lim(t+2^t)^(1/t) (t->0)
=lim[1+(t+2^t-1)]^{[1/(t+2^t-1)][(t+2^t-1)/t]} (t->0)
=lim e^[(t+2^t-1)/t] (t->0) .利用重要极限lim(1+1/n)^n=e(n->+∞)
=e^lim[(t+2^t-1)/t] (t->0)
=e^lim(1+2^t*ln2) (t->0) .L'Hospital法则
=e^(1+ln2)
=2e