AB^T=0 充要条件是 B^T的列都是AX=0 的解
由于 B 行满秩,所以 R(B)=n-r ,恰为 AX=0 的基础解系所含向量的个数
所以 B^T的列向量构成Ax=0的一个基础解系
由 AB^T=0 得 BA^T=0,同理知 A^T的列构成了By=0的一个基础解系
AB^T=0 充要条件是 B^T的列都是AX=0 的解
由于 B 行满秩,所以 R(B)=n-r ,恰为 AX=0 的基础解系所含向量的个数
所以 B^T的列向量构成Ax=0的一个基础解系
由 AB^T=0 得 BA^T=0,同理知 A^T的列构成了By=0的一个基础解系