(2014•巴州区模拟)曲线y=2sin(x+[π/4])cos(x-[π/4])和直线y=[1/2]在y轴右侧的交点按

1个回答

  • 解题思路:本题考查的知识点是诱导公式,二倍角公式及函数图象的交点,将y=2sin(x+[π/4])cos(x-[π/4])的解析式化简得y=sin(2x)+1,令y=[1/2],解得x=kπ+[3π/4]±[π/6](k∈N),代入易得|P2P4|的值.

    ∵y=2sin(x+[π/4])cos(x-[π/4])

    =2sin(x-[π/4]+[π/2])cos(x-[π/4])

    =2cos(x-[π/4])cos(x-[π/4])

    =cos[2(x-[π/4])]+1

    =cos(2x-[π/2])+1

    =sin(2x)+1

    若y=2sin(x+[π/4])cos(x-[π/4])=[1/2]

    则2x=2kπ+[3π/2]±[π/3](k∈N)

    x=kπ+[3π/4]±[π/6](k∈N)

    故|P2P4|=π

    故答案为:π

    点评:

    本题考点: 两角和与差的正弦函数;两角和与差的余弦函数;三角函数的周期性及其求法.

    考点点评: 求两个函数图象的交点间的距离,关于是要求出交点的坐标,然后根据两点间的距离求法进行求解.