解题思路:本题考查的知识点是诱导公式,二倍角公式及函数图象的交点,将y=2sin(x+[π/4])cos(x-[π/4])的解析式化简得y=sin(2x)+1,令y=[1/2],解得x=kπ+[3π/4]±[π/6](k∈N),代入易得|P2P4|的值.
∵y=2sin(x+[π/4])cos(x-[π/4])
=2sin(x-[π/4]+[π/2])cos(x-[π/4])
=2cos(x-[π/4])cos(x-[π/4])
=cos[2(x-[π/4])]+1
=cos(2x-[π/2])+1
=sin(2x)+1
若y=2sin(x+[π/4])cos(x-[π/4])=[1/2]
则2x=2kπ+[3π/2]±[π/3](k∈N)
x=kπ+[3π/4]±[π/6](k∈N)
故|P2P4|=π
故答案为:π
点评:
本题考点: 两角和与差的正弦函数;两角和与差的余弦函数;三角函数的周期性及其求法.
考点点评: 求两个函数图象的交点间的距离,关于是要求出交点的坐标,然后根据两点间的距离求法进行求解.