由已知:2=tan(π/4+α)=(1+tanα)/(1-tanα)=(sinα+cosα)/(coα-sinα)
所以(sinα-cosα)/(sinα+cosα)=-1/2
由已知:cosα=√5/5,cosβ=√10/10
cos(α+β)=cosαcosβ-sinαsinβ=-√2/2
又0故0α为锐角,所以sinα=4√3/7
cos(α+π/3)=cosαcosπ/3-sinαsinπ/3=1/14-12/14=-11/14
由已知:2=tan(π/4+α)=(1+tanα)/(1-tanα)=(sinα+cosα)/(coα-sinα)
所以(sinα-cosα)/(sinα+cosα)=-1/2
由已知:cosα=√5/5,cosβ=√10/10
cos(α+β)=cosαcosβ-sinαsinβ=-√2/2
又0故0α为锐角,所以sinα=4√3/7
cos(α+π/3)=cosαcosπ/3-sinαsinπ/3=1/14-12/14=-11/14