若集合m=(x,y,x),集合n=(-1,0,1),f是从M到N的映射,则满足f(x)+f(y)+f(z)=0的映射有?
1个回答
分类讨论
f(x)=f(y)=f(z)=0 1种
f(x)=0,另外两个分别是-1和1 有2种
f(y)=0,另外两个分别是-1和1 有2种
f(z)=0,另外两个分别是-1和1 有2种
共7种情况
相关问题
若集合M={x,y,z},集合N={-1,0,1},f是从M到N的映射,则满足f(x)+f(y)+f(z)=0的映射有(
若f:x→|x|是从集合M到集合N的映射,若M={-1,0,1,2},则M∩N=( )
若f:x→|x|是从集合M到集合N的映射,若M={-1,0,1,2},则M∩N=( ) A.{0} B.{1} C.{
设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为__
高中集合映射设集合M={-1,0,1},N={1,2,3,4,5,},映射f:M→N满足条件“对任意的x∈M,x+
有关映射的概念已知集合M={a,b,c},N={-3,0,3},f是从集合M都集合N的映射,则满足f(a)+f(b)+f
已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)-f(b)=f(c),那么映射f的个数有几
集合M={a,b,c}N={-1,0,1}由M到N的映射f满足f(a)+f(b)=f(c),这样的映射有多少个?
已知集合M={a,b,c},N={-1,0,1},从M到N的映射满足f(a)+f(b)+f(c)=0,那么映射f的个数为
设集合A到B的映射为f1:x→y=2x+1,集合B到C的映射为f2:y→z=y^2-1,则集合A到C的映射f的对应法则是