解题思路:(1)在AM上截取AN′=CN,连接ON′,OC,OA,根据等边三角形的性质和线段垂直平分线得出∠OCN=∠OAN′=30°,OC=OA,证△OCN≌△OAN′推出ON=ON′,∠CON=∠AON′,求出∠NOM=∠MON′,根据SAS证△MON≌△MON′,推出MN=MN′,即可求出答案;
(2)结论还成立,证明过程与(1)类似;
(3)结论是MN=CN+AM,延长CA到N′,使AN′=CN,连接OC,OA,ON′,证△OCN≌△OAN′推出ON=ON′,∠CON=∠AON′,求出∠NOM=∠MON′,根据SAS证△MON≌△MON′,推出MN=MN′,即可求出答案;
(1)MN=AM-CN,
理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,O也是等边三角形三个角的平分线交点,
∴∠OCA=∠OAB=∠OCN=[1/2]×60°=30°,
∴∠AOC=180°-30°-30°=120°,
∴∠NCO=∠OAN′,
∵在△OCN和△OAN′中
OC=OA
∠NCO=∠OAN′
AN′=CN,
∴△OCN≌△OAN′(SAS),
∴ON′=ON,∠CON=∠AON′,
∵∠COA=120°,∠NOM=60°,
∴∠CON+∠COM=60°,
∴∠AON′+∠COM=60°,
即∠NOM=∠N′OM,
∵在△NOM和△N′OM中
ON=ON′
∠NOM=∠N′OM
OM=OM,
∴△NOM≌△N′OM,
∴MN=MN′,
∵MN′=AM-AN′=AM-CN,
∴MN=AM-CN.
(2)MN=AM-CN,
证明:理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,由三线合一定理得:∠OCB=∠OCA=∠OAC=30°,∠AOC=180°-30°-30°=120°,
∴∠OCN=∠OAN′=30°,
∵在△OCN和△OAN′中
OC=OA
∠NCO=∠OAN′
AN′=CN,
∴△OCN≌△OAN′(SAS),
∴ON=ON′,∠CON=∠AON′
∴∠N′ON=∠COA=120°,
又∵∠MON=60°,
∴∠MON=∠MON′=60°
∵在△NOM和△N′OM中
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质.
考点点评: 本题考查了等边三角形的性质和全等三角形的性质和判定,主要考查学生的推理能力和猜想能力,题目具有一定的代表性,证明过程类似.