解题思路:先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.
∵线段AB的中点为M,
∴AM=BM=6cm
设MC=x,则CB=2x,
∴x+2x=6,解得x=2
即MC=2cm.
∴AC=AM+MC=6+2=8cm.
点评:
本题考点: 比较线段的长短.
考点点评: 利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
解题思路:先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.
∵线段AB的中点为M,
∴AM=BM=6cm
设MC=x,则CB=2x,
∴x+2x=6,解得x=2
即MC=2cm.
∴AC=AM+MC=6+2=8cm.
点评:
本题考点: 比较线段的长短.
考点点评: 利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.