1/2+1/4+1/8+1/16+1/32+1/128
=1/2+(1/2)²+(1/2)³+(1/2)^4+(1/2)^5+(1/2)^6+(1/2)^7
=(1/2)×[1-(1/2)^7]÷(1-1/2)
=127/128
1/2+1/4+1/8+1/16+1/32+1/128+·················+(1/2)^n (无限分割下去,n趋向无穷大)
=(1/2)×[1-(1/2)^n]÷(1-1/2)
=1-1/(2^n)
n无穷大 2的n次方无穷大 取倒数1/(2^n)趋近于0
lim[1-1/(2^n)]=1
在图形中,无论分割多少次后,所有矩形面积相加依然等于正方形面积=1