设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε使得εf '(ε)+f(ε)=
2个回答
证明:考察函数F(x) = x f(x)
显然,F(0)=0,F(1)=0.
那么,根据罗尔定理,必存在一点ε∈(0,1),使得F'(ε)=0.
而F'(ε)=εf '(ε)+f(ε),即得所要结论.
相关问题
设y=f(x)在[a,b]上连续,f(a)=f(b),则在(a,b)内至少存在一点ε∈(a,b),使得f'(ε)=0.对
设f(x)在[a,b]上连续,证明:至少存在一点ε∈[a,b],使f(ε)=[f(a)+f(b)]/2
假设f:[0,1]→R二阶可导,f(0)=f(1),f'(1)=1.证明:存在ε∈(0,1) ,so that f''(
已知函数f(X)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点Xo属于(0,1),使得f'(
设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f([1/2])=1,试证明至少存在一点ξ
函数f(x)在[0,1]上连续,且在(0,1)上可导,f(0)=1,f(1)=0,证明在(0,1)上至少存在一点q,使得
微积分 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少
设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1