若1+2+3+4+------+n=m
且a.b互为倒数
ab=1
则(ab的n次方)*(a² b的n-1次方)乘------乘(a的n-1次方 b²)乘(a的n次方 b)
=(a*a^2*a^3...a^n)*(b*b^2*b^3...b^n)
=a^(1+2+3+...+n)b^(1+2+3+...+n)
=a^mb^m
=(ab)^m
=1^m
=1
若1+2+3+4+------+n=m
且a.b互为倒数
ab=1
则(ab的n次方)*(a² b的n-1次方)乘------乘(a的n-1次方 b²)乘(a的n次方 b)
=(a*a^2*a^3...a^n)*(b*b^2*b^3...b^n)
=a^(1+2+3+...+n)b^(1+2+3+...+n)
=a^mb^m
=(ab)^m
=1^m
=1