an=(1/3)^n, Bn=n(n+1)/2, bn=Bn-Bn-1=n(n+1)/2-(n-1)n/2=n
anbn=(1/3)^n*n
Sn=1/3*1+(1/3)^2*2+(1/3)^3*3+.+(1/3)^(n-1)*(n-1)+(1/3)^n*n (1)
(1)式两边乘以1/3
1/3Sn= (1/3)^2*1+(1/3)^3*2+(1/3)^4*3+ .+(1/3)^n*(n-1)+(1/3)^(n+1)*n (2)
(1)式-(2)式,得
2/3Sn=[1/3+(1/3)^2+(1/3)^3+.+(1/3)^n]-(1/3)^(n+1)*n
=1/3[1-(1/3)^n]/(1-1/3)-(1/3)^(n+1)*n
=1/2-(1/2+n/3)(1/3)^n
Sn=3/4-(3/4+n/2)(1/3)^n=1/3
所以1/3