(1)a(n+1)=2an/(an+1) 1/a(n+1)=1/2+1/(2an) 1/a(n+1)-1=1/2(1/an-1)
∴{1/an-1}是等比数列
(2)1/an-1=(1/a1-1)*(1/2)^(n-1)=1/2*(1/2)^(n-1)=(1/2)^n
∴1/an=1+(1/2)^n n/an=n+n*(1/2)^n
∴Sn=(1+2+3+……+n)+[1*(1/2)^1+2*(1/2)^2+……+n*(1/2)^n]
设 Tn=1*(1/2)^1+2*(1/2)^2+……+n*(1/2)^n ……(1)
1/2Tn= 1*(1/2)^2+2*(1/2)^3+……+n*(1/2)^(n+1)……(2)
(1)-(2)得:
1/2Tn= 1*(1/2)^1+1*(1/2)^2+……+1*(1/2)^n -n*(1/2)^(n+1)
= 1-(1/2)^n-n*(1/2)^(n+1)
Tn=2-(1/2)^(n-1)-n*(1/2)^n
∴Sn=n(n+1)/2+2-(1/2)^(n-1)-n*(1/2)^n